Search results for "Janus particle"
showing 10 items of 29 documents
Interfacial stabilization by soft Janus nanoparticles
2016
Abstract The stabilization of water/air, water/oil and water/solid interfaces by Janus particles with polystyrene (PS) and poly(methacrylic acid) (PMAA) hemispheres was systematically investigated. The stabilization of these interfaces is of relevance for the formulation of foams, emulsions and dispersions. The Janus particles were prepared from micellar solutions of polystyrene-b-polyisoprene-b-poly(tert-butyl methacrylate) (PS-PI-PtBMA) triblock terpolymers by selective cross-linking of the polyisoprene domain on a multi-gram scale, followed by hydrolysis of the PtBMA block. For the investigation of water/oil-emulsions a series of hydrophobic oils (paraffin oil, xylene, peanut oil, isopro…
Self-assembly of colloidal micelles in microfluidic channels.
2016
The self-assembly of amphiphilic Janus colloids in microfluidic channels is studied using hybrid molecular dynamics simulations with fully resolved hydrodynamic interactions incorporated through the multi-particle collision dynamics algorithm. The simulations are conducted at a density and temperature where the Janus particles spontaneously self-assemble into spherical micelles to minimize the interface between the solvophobic caps and the surrounding solvent. In confined systems, this contact area can also be reduced by aggregation at the channel walls. Indeed, a sizable fraction of free particles and small clusters with three and four members are found at the walls when the microfluidic c…
Anti-oxidative effects and harmlessness of asymmetric Au@Fe3O4 Janus particles on human blood cells
2014
AbstractThe physical properties of asymmetric Janus particles are highly promising for future biomedical applications. However, only a few data is available on their biological impact on human cells. We investigated the biological impact of different Au@Fe3O4 Janus particle formulations in vitro to analyse specific uptake modalities and their potential cytotoxic effects on human cells of the blood regarding intravenous injection. We demonstrate that Au@Fe3O4 Janus particles exhibit a similar or even better biocompatibility compared to the well-studied spherical iron oxide nanoparticles. The impact of Janus particles on cells depends mainly on three factors. (1) Surface functionalization: NH…
Contact Potentials, Fermi Level Equilibration, and Surface Charging.
2016
This article focuses on contact electrification from thermodynamic equilibration of the electrochemical potential of the electrons of two conductors upon contact. The contact potential difference generated in bimetallic macro- and nanosystems, the Fermi level after the contact, and the amount and location of the charge transferred from one metal to the other are discussed. The three geometries considered are spheres in contact, Janus particles, and core-shell particles. In addition, the force between the two spheres in contact with each other is calculated and is found to be attractive. A simple electrostatic model for calculating charge distribution and potential profiles in both vacuum an…
Janus particles: synthesis, self-assembly, physical properties, and applications.
2013
Multifunctional two-photon active silica-coated Au@MnO Janus particles for selective dual functionalization and imaging.
2014
Monodisperse multifunctional and nontoxic Au@MnO Janus particles with different sizes and morphologies were prepared by a seed-mediated nucleation and growth technique with precise control over domain sizes, surface functionalization, and dye labeling. The metal oxide domain could be coated selectively with a thin silica layer, leaving the metal domain untouched. In particular, size and morphology of the individual (metal and metal oxide) domains could be controlled by adjustment of the synthetic parameters. The SiO2 coating of the oxide domain allows biomolecule conjugation (e.g., antibodies, proteins) in a single step for converting the photoluminescent and superparamagnetic Janus nanopar…
Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization
2015
In the research field of nanoparticles, many studies demonstrated a high impact of the shape, size and surface charge, which is determined by the functionalization, of nanoparticles on cell viability and internalization into cells. This work focused on the comparison of three different nanoparticle types to give a better insight into general rules determining the biocompatibility of gold, Janus and semiconductor (quantum dot) nanoparticles. Endothelial cells were subject of this study, since blood is the first barrier after intravenous nanoparticle application. In particular, stronger effects on the viability of endothelial cells were found for nanoparticles with an elongated shape in compa…
Inorganic Janus particles for biomedical applications.
2014
Based on recent developments regarding the synthesis and design of Janus nanoparticles, they have attracted increased scientific interest due to their outstanding properties. There are several combinations of multicomponent hetero-nanostructures including either purely organic or inorganic, as well as composite organic–inorganic compounds. Janus particles are interconnected by solid state interfaces and, therefore, are distinguished by two physically or chemically distinct surfaces. They may be, for instance, hydrophilic on one side and hydrophobic on the other, thus, creating giant amphiphiles revealing the endeavor of self-assembly. Novel optical, electronic, magnetic, and superficial pro…
Microfluidic Preparation of Liquid Crystalline Elastomer Actuators
2018
This paper focuses on the microfluidic process (and its parameters) to prepare actuating particles from liquid crystalline elastomers. The preparation usually consists in the formation of droplets containing low molar mass liquid crystals at elevated temperatures. Subsequently, these particle precursors are oriented in the flow field of the capillary and solidified by a crosslinking polymerization, which produces the final actuating particles. The optimization of the process is necessary to obtain the actuating particles and the proper variation of the process parameters (temperature and flow rate) and allows variations of size and shape (from oblate to strongly prolate morphologies) as wel…
Silanization as a versatile functionalization method for the synthesis of polymer/magnetite hybrid nanoparticles with controlled structure
2016
We compare the use of different trimethoxysilane compounds for the surface functionalization of magnetite nanoparticles and their subsequent incorporation in hybrid particles formed by in situ polymerization. For the encapsulation of inorganic nanoparticles via miniemulsion polymerization, surface functionalization of the inorganic material is necessary to hydrophobize the otherwise hydrophilic inorganic material and to compatibilize it with the polymer. Hydrophobic magnetite nanoparticles are usually prepared by surface functionalization with oleic acid, which leads to effective hydrophobization, but offers only limited control over the structure of the hybrid particles. As an alternative,…